Table 4. Least-squares planes given in the form lX' + mY' + nZ' = d where X', Y' and Z' are coordinates in Å with respect to an orthogonalized axial system

(a) Plane equations

Plane (1):	0.588X' + 0.725Y' - 0.357Z' = 6.494
Plane (2):	-0.692X' - 0.722Y' - 0.033Z' = -7.583
Plane (3):	-0.520X' - 0.273Y' + 0.810Z' = -5.288
Plane (4):	-0.613X' + 0.498Y' - 0.614Z' = 2.310
Plane (5):	-0.953X' + 0.270Y' + 0.139Z' = -2.026
Plane (6):	-0.926X' - 0.304Y' + 0.224Z' = 1.534
Plane (7):	-0.850X' + 0.376Y' + 0.369Z' = -1.970

(b) Deviations of atoms (Å) from planes (starred atoms not used to define planes)

Plane (1):	C(6a) - 0.011	C(7) 0.003	C(8) 0.001
	C(9) 0.003	C(10) - 0.012	C(10a) = 0.016
	$C(11a)^* - 0.031$	$N(6)^* - 0.027$	N(15)* 0.858
	C(14*)a 0·457		
Plane (2):	C(11a) - 0.016	C(11) 0.004	C(12) 0.011
	C(13) - 0.014	C(14) 0.001	C(14a) = 0.013
	$C(10a)^* - 0.131$	N(15)* 0.058	N(6)* 0.865
	$C(6a)^* = 0.370$		
Plane (3):	O(1) 0.008	O(2) 0.013	C(16) - 0.016
	C(17) - 0.006		
Plane (4):	O(3) - 0.012	O(4) - 0.019	C(18) 0.022
	C(19) 0.009		
Plane (5):	O(5) 0.037	O(6) 0.056	C(20) - 0.067
	C(21) - 0.029	C(22) 0.003	
Plane (6):	O(7) 0.009	O(8) 0.013	C(23) -0.016
	C(24) - 0.006		· ·
Plane (7):	C(4) - 0.010	C(2) - 0.011	N(3) 0.031
	C(20) - 0.010		

the ranges which would be expected for similar bonding environments. There are no abnormally short intermolecular contacts.

We thank Professor C. W. Rees, F.R.S. and Dr R. C. Storr for suggesting this problem and for supplying crystalline samples.

References

GAIT, S. F., RANCE, M. J., REES, C. W. & STORR, R. C. (1972a). Chem. Commun. pp. 688–689.

GAIT, S. F., RANCE, M. J., REES, C. W. & STORR, R. C. (1972b). Chem. Commun. pp. 806–807.

HUISGEN, R. (1963). Angew. Chem. Int. Ed. 2, 565-598. MEER, H. VAN DER (1972). Acta Cryst. B28, 367-370.

Acta Cryst. (1974). B30, 2701

Structure Cristalline du Trimétaphosphate de Sodium-Potassium: Na₂KP₃O₉

PAR ISAAC TORDJMAN, ANDRÉ DURIF ET CÉSAR CAVERO-GHERSI

Laboratoire des Rayons X, CNRS, B.P. 166, Centre de Tri, 38042 Grenoble Cedex, France

(Reçu le 21 mai 1974, accepté le 5 juillet 1974)

Sodium potassium trimetaphosphate, Na₂KP₃O₉, is triclinic with a=6.886 (2), b=9.494 (3), c=6.797 (2) Å, $\alpha=110.07$ (2), $\beta=104.69$ (2), $\gamma=86.68$ (2)°, and Z=2. The space group is $P\overline{1}$. The crystal structure has been solved by a direct method using only 1600 reflexions from the 3706 collected. For these 1600 reflexions the *R* value is 0.018. Calculated for all the reflexions the *R* value is 0.032.

Introduction

La préparation chimique et les principales caractéristiques cristallographiques du trimétaphosphate de sodium-potassium, Na₂KP₃O₉, ont déjà été décrites par Cavero-Ghersi & Durif (1974). Ce sel cristallise avec une maille triclinique de paramètres a=6,886 (2), b=9,494 (3), c=6,797 (2) Å, $\alpha=110,07$ (2), $\beta=$ 104,69 (2), $\gamma = 86,68$ (2)°, renfermant deux unités formulaires. L'étude structurale montre que le groupe spatial est $P\overline{1}$.

Techniques expérimentales

Le cristal utilisé était un fragment de prisme de forme approximativement cubique. La dimension des arêtes était de 0,16 mm. 3706 réflexions ont été mesurées à l'aide d'un diffractomètre automatique Philips PW 1100 dans un intervalle angulaire de 0 à 35° (θ). La largeur de balayage était de 1,40° pour toutes les réflexions. La vitesse de balayage de ce domaine d'intégration était de 0,02° s⁻¹ et le fond continu était mesuré 10 s à chaque extrémité du domaine d'intégration. La longueur d'onde utilisée était celle du molybdène.

Détermination de la structure

L'analyse structurale a été entreprise au moyen de méthodes directes. Les études statistiques sur les facteurs de structure normalisés ne permettent pas de trancher entre les deux groupes spatiaux possibles P1 et $P\overline{1}$. Toutes les solutions essayées avec le groupe non centrosymétrique aboutissaient à de mauvaises figures de mérite. Nous avons donc utilisé le groupe spatial $P\overline{1}$.

L'origine était définie par les réflexions

Tableau 1. Paramètres atomiques $(\times 10^5)$ et coefficients de températures isotropes

 $O_i = oxygène$ de liaison P-O-P. Les chiffres entre parenthèses indiquent les numéros respectifs des phosphores de la liaison. $O_e = oxygène$ extérieur au cycle P₃O₉. Le premier chiffre entre parenthèsss indique le numéro du tétraèdre, le deuxième le numéro d'ordre de cet oxygène dans le tétraèdre.

Atomes	x	У	z	В
Κ	3083 (8)	83467 (5)	15703 (8)	2,017
Na(I)	42258 (13)	83064 (10)	76932 (14)	1,765
Na(2)	72064 (14)	49042 (10)	71917 (15)	2,052
P(I)	24217 (8)	47530 (5)	75806 (8)	1,072
P(2)	11632 (7)	21607 (5)	37491 (8)	1,085
P(3)	45633 (8)	19672 (5)	71019 (8)	1,053
$O_{e}(11)$	36536 (22)	54832 (15)	66739 (23)	1,443
$O_{e}(12)$	14144 (25)	56449 (17)	92635 (26)	1,877
$O_{e}(21)$	-7328(22)	12716 (17)	26170 (27)	1,751
$O_{c}(22)$	23606 (22)	25584 (16)	24713 (23)	1,486
$P_{e}(31)$	60946 (23)	23183 (16)	61269 (24)	1,506
$O_{e}(32)$	50473 (25)	10071 (16)	84681 (24)	1,741
$O_i(12)$	7068 (22)	36402 (15)	56268 (24)	1,411
$O_i(13)$	37099 (23)	35222 (15)	84921 (22)	1,398
$O_{1}(23)$	25338 (22)	12726 (14)	52337 (23)	1,312

	E	φ
3 2 3	3,12	0
474	2,57	π
598	2.62	π

Nous avons ensuite choisi un ensemble de 9 phases symboliques et recherché la combinaison de phases, la plus probable, parmi les 512 possibles (2⁹), par la détermination des maximums de la fonction de phases \mathscr{F} (Riche, 1973). Cette recherche a été entreprise au moyen du programme *DEVIN* du même auteur. Elle nous a amené à huit maximums possibles ($\mathscr{F} = 100$). Pour chacune des combinaisons et à l'aide du pro-

Fig. 1. Projection de la maille suivant la direction c.

Tableau 2. Facteurs anisotropes de température

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
К	1289 (11)	490 (5)	1201 (11)	179 (5)	165 (8)	159 (6)
Na(I)	979 (19)	637 (9)	1039 (19)	51 (10)	304 (15)	285 (11)
Na(2)	1357 (20)	556 (9)	1462 (22)	-18(11)	382 (17)	427 (12)
P(I)	711 (10)	276 (4)	756 (10)	39 (5)	323 (8)	130 (5)
P(2)	566 (9)	309 (4)	794 (10)	-26(5)	117 (8)	158 (5)
P(3)	733 (9)	302 (5)	644 (10)	53 (5)	182 (8)	198 (6)
O _e (11)	861 (28)	446 (15)	1082 (33)	- 69 (16)	355 (25)	313 (19)
O.(12)	1310 (26)	445 (16)	1304 (37)	165 (18)	781 (30)	99 (20)
$O_{2}(21)$	649 (28)	464 (15)	1477 (39)	-114(16)	95 (25)	145 (20)
O.(22)	875 (30)	510 (15)	958 (32)	8 (16)	264 (25)	319 (19)
$O_{a}(31)$	780 (28)	557 (16)	958 (31)	4 (16)	259 (23)	280 (18)
O ₂ (32)	1414 (35)	441 (15)	942 (32)	109 (18)	198 (27)	359 (18
$O_{1}(12)$	677 (26)	360 (13)	1155 (33)	42 (14)	231 (24)	155 (17
$O_{1}(13)$	1063 (30)	354 (14)	769 (30)	120 (16)	273 (24)	168 (17
$O_{1}(23)$	839 (28)	321 (13)	928 (31)	6 (15)	161 (23)	213 (17

Fig. 2. Détails de la coordination de l'atome de sodium Na(1) projetée suivant c.

Fig. 3. Détails de la coordination de l'atome de sodium Na(2) projetée suivant c.

gramme FASTAN (Main, Woolfson & Germain, 1971), nous avons généré les signes de 410 facteurs de structure normalisés (E > 1,2) et retenu celle qui correspondait à la meilleure figure de mérite (ABSFOM = 1.17). Une synthèse de Fourier réalisée à l'aide de ces facteurs de structure révèle alors la totalité de la structure. Une série d'affinements, par une méthode de moindres carrés à matrice complète (Prewitt, 1966) écartant les réflexions faibles aboutit à un facteur $R_F =$ 0,018 pour les 1600 réflexions utilisées. Ce facteur sur l'ensemble des réflexions mesurées (3706) est de 0,032. Les paramètres des positions atomiques et les facteurs de température isotropes sont consignés dans le Tableau 1, les facteurs de température anisotropes dans le Tableau 2, les longueurs et directions des axes des ellipsoïdes de vibration thermique dans le Tableau 3, les distances interatomiques et les angles des principales liaisons dans le Tableau 4.*

Description de la structure

La structure cristalline de Na₂KP₃O₉, en accord avec les résultats de l'analyse chromatographique est bien celle d'un trimétaphosphate, caractérisé par l'existence d'anions cycliques P₃O₉. La Fig. 1 donne une projection détaillée de cet arrangement sur le plan *ab*. Les caractéristiques du cycle sont rassemblées dans le Tableau 4. Comme dans les autres anions phospho-

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 30569: 39 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, Angleterre.

Tableau 3. Axes principaux des ellipsoïdes de vibration thermique

 $U^2 = \text{carrés moyens des amplitudes de vibration thermiques (Å^2) le long des axes principaux des ellipsoïdes. <math>\theta_a, \theta_b, \theta_c$: angles (°) de ces axes avec les axes cristallographiques a, b, c.

	U	θ_a	θ_b	θ_{c}		U	θ_a	θ_{b}	θ_{c}
К	0.191	34	59	130	$O_{a}(12)$	0.189	51	101	54
	0,151	64	101	41	- 2()	0.156	122	149	54
	0,132	110	34	81		0,107	125	61	56
Na(1)	0,161	79	16	98	$O_{a}(21)$	0.182	104	116	6
	0,149	32	103	73		0.145	123	40	85
	0,138	120	99	19		0.111	37	63	87
Na(2)	0,175	17	100	89	$O_{c}(22)$	0,147	99	43	67
• •	0,170	98	73	37		0,141	26	96	79
	0,135	74	19	127		0,123	114	132	25
P(1)	0,134	49	99	56	$O_{e}(31)$	0,150	97	23	88
	0,111	127	138	44	,	0,137	57	102	48
	0,103	116	49	66		0,127	146	109	43
P(2)	0,127	114	99	15	$O_{e}(32)$	0,183	6	81	106
	0,117	49	134	75		0,144	94	58	53
	0,107	51	45	92		0,109	85	146	42
P(3)	0,129	16	77	95	$O_{l}(12)$	0,155	100	115	7
	0,114	106	61	49		0,125	37	59	92
	0,101	89	148	41		0,118	125	42	83
$O_{e}(11)$	0,149	52	102	52	$O_{l}(13)$	0,158	18	72	99
	0,145	117	51	64		0,123	91	124	20
	0,107	130	138	49		0,115	108	93	73
					$O_{l}(23)$	0,142	28	88	130
						0,132	62	92	46
						0,111	87	2	108

Tableau 4. Distances (Å) et angles (°) des liaisons

Tétraèdre 1

$P(1) - O_e(11) P(1) - O_e(12) O_e(11) - O_e(12) O_e(11) - O_t(12) O_e(11) - O_t(13) O_e(11) - O_e(11) O_e(11) - O_e(12) O_e(11) - O_e(12) O_e(12) O_e(12) - O_e(12) O_e(12) O_e(12) - O_e(12) O_e(1$) 1,485 (2)) 1,475 (2)) 2,581 (3)) 2,551 (2)) 2,558 (2) $O_e(11)-P(1)-O_e$ $O_e(11)-P(1)-O_i$ $O_e(12)-P(1)-O_i$ $O_e(12)-P(1)-O_i$ $O_e(12)-P(1)-O_i$	$\begin{array}{c} P(1)O_t(12)\\ P(1)O_t(13)\\ O_e(12)-O_t(12)\\ O_t(12)-O_t(13)\\ O_i(12)-O_t(13)\\ (12) 121,4 \ (1)\\ (12) 109,8 \ (1)\\ (13) 110,7 \ (1)\\ (12) 106,9 \ (1)\\ (13) 106,4 \ (1)\\ (13) 99,4 \ (1) \end{array}$	1,631 (1) 1,623 (2) 2,498 (2) 2,482 (2) 2,482 (2)
Tétraèdre 2			
$\begin{array}{l} P(2)O_{e}(2)\\ P(2)O_{e}(2)\\ O_{e}(2)-O_{e}(2)\\ O_{e}(2)-O_{i}(1)\\ O_{e}(2)-O_{i}(2)\\ O_{e}(2)-O_{i}(2)\\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} P(2) - O_i(12) \\ P(2) - O_i(23) \\ O_e(22) - O_i(12) \\ O_e(22) - O_i(23) \\ O_i(12) - O_i(23) \\ (22) 119, 4 \ (1) \\ (12) 108, 2 \ (1) \\ (23) 106, 8 \ (1) \\ (12) 111, 0 \ (1) \\ (23) 110, 0 \ (1) \\ (23) 99, 7 \ (1) \end{array}$	1,619 (1) 1,621 (2) 2,558 (2) 2,554 (3) 2,477 (2)
Tétraèdre 3			
$P(3) - O_e(31) P(3) - O_e(32) O_e(31) - O_i(32) O_e(31) - O_i(12) O_e(31) - O_i(22) O_e(31) - O_i(22) O_e(31) - O_i(22) O_e(31) - O_i(32) O_e(32) - O_i(32) O_e(32) - O_i(32) O_e(32) - O_i(32) O_e(32) - O_i(32) O_i(32) O_e(32) - O_i(32) O_i$	1,486 1,481 (2) 2,578 (3) 3) 2,539 (2) 3) 2,546 (2) $O_e(31)-P(3)-O$ $O_e(31)-P(3)-O$ $O_e(32)-P(3)-O$ $O_e(32)-P(3)-O$ $O_e(32)-P(3)-O$ $O_i(13)-P(3)-O$	$\begin{array}{c} P(3) - O_{l}(13) \\ P(3) - O_{l}(23) \\ O_{e}(32) - O_{l}(23) \\ O_{e}(32) - O_{l}(23) \\ O_{l}(13) - O_{l}(13) \\ O_{l}(13)$	1,625 (1) 1,623 (1) 2,505 (2) 2,508 (2) 2,483 (2)
Distances P(i)-	-P(j) et angles	de liaisons $P(i) - O_i(i)$	$ij)-\mathbf{P}(j)$
P(1)-P(2) P(1)-P(3) P(2)-P(3)	2,8799 (6) 2,9115 (7) 2,8706 (7)	$\begin{array}{l} P(1)-O_i(12)-P(2) \\ P(1)-O_i(13)-P(3) \\ P(2)-O_i(23)-P(3) \end{array}$	124,7 (1) 127,4 (1) 124,5 (1)
Figures de coc Na(1)- $O_e(11)$ Na(1)- $O_e(21)$ Na(1)- $O_e(22)$ Na(1)- $O_e(31)$ Na(1)- $O_e(32)$ Na(1)- $O_e(32)$ Na(1)- $O_e(32)$ Distances K-O	prdination des c 1) 2,555 (2) 1) 2,383 (2) 2) 2,461 (2) 1) 2,402 (2) 2) 2,402 (2) 2) 2,502 (2) 2) 2,385 (2)	ations Na(1) et Na(Na(2)- $O_c(11)$ Na(2)- $O_e(11)$ Na(2)- $O_e(12)$ Na(2)- $O_e(12)$ Na(2)- $O_e(22)$ Na(2)- $O_e(31)$ Na(2)- $O_i(12)$ Na(2)- $O_i(13)$	2) 2,440 (2) 2,442 (2) 2,892 (2) 2,574 (2) 2,370 (2) 2,420 (2) 2,910 (2) 3,010 (2)
$\begin{array}{c} K-O_{e}(12) \\ K-O_{e}(21) \\ K-O_{e}(21) \\ K-O_{e}(22) \\ K-O_{e}(31) \end{array}$	2,690 (2) 2,721 (2) 3,076 (2) 2,769 (1) 2,741 (2)	$\begin{array}{l} K-O_{e}(32) \\ K-O_{l}(12) \\ K-O_{l}(13) \\ K-O_{l}(23) \\ K-O_{l}(23) \end{array}$	3,299 (2) 3,312 (2) 3,356 (2) 3,174 (1) 3,196 (2)

riques déjà étudiés, on remarque que les liaisons $P-O_i$, correspondant aux liaisons $-P-O_i-P$ - sont toujours plus longues que les liaisons $P-O_e$, correspondant à des atomes d'oxygène liés à un seul atome de phosphore, ces dernières liaisons étant beaucoup plus fortes. La moyenne pour les premières est de 1,48 Å, tandis que pour les secondes on trouve 1,60 Å.

De même les angles O_i -P- O_i sont plus petits (100°), que les angles O_e -P- O_e (120°). Les deux cycles de la

Fig. 4. Détails de la coordination de l'atome de potassium en projection suivant c.

maille se déduisent l'un de l'autre par le centre de symétrie et la cohésion entre ces anions est assurée par les cations associés Na et K. Na(1) est entouré par un octaèdre d'atomes d'oxygène de type O_e (Fig. 2). Dans cet octaèdre les distances Na(1)-O sont comprises entre 2,38 et 2,55 Å. Na(2) a lui aussi un voisinage octaédrique, les distances Na(2)-O étant cette fois comprises entre 2,37 et 2,89 Å (Fig. 3). Les oxygènes qui participent à ce dernier environnement sont tous également de type O_e. Pour l'atome Na(2) on trouve cependant à plus grande distance (2,91 et 3,01 Å) deux oxygènes de type O_i que l'on peut considérer comme voisins éloignés, assez faiblement liés. Chaque atome de sodium est relié à cinq cycles P₃O₉ de l'arrangement. Le potassium, de plus gros rayon, à un voisinage plus complexe formé de dix atomes d'oxygène à des distances comprises entre 2,69 et 3,31 Å (Fig. 4).

Il est important de noter que la formule chimique de ce sel et ses paramètres de réseau montrent qu'il doit être isotype d'une série de trimétasilicates du type $M_2M'Si_3O_9$ pour M = Ca, Mn et M' = Pb, Ba dont la structure cristalline n'était pas déterminée (Ito, 1968), (Armstrong, 1963) et (Glasser & Glasser, 1961). Le schéma de substitution peut se résumer par:

$$Si_3O_0 \rightleftharpoons P_3O_0$$

$$2Na + K \rightleftharpoons 2Ca + Ba$$
.

Références

ARMSTRONG, R. L. (1963). Amer. Min. 43, 698-703.

- CAVERO-GHERSI, C. & DURIF, A. (1974). C. R. Acad. Sci. Paris, Sér. C, 278, 459-461.
- GLASSER, L. S. & GLASSER, F. P. (1961). Z. Kristallogr. 116, 263–266.
- ITO, T. (1968). Amer. Min. 48, 231-240.
- MAIN, P., WOOLFSON, M. & GERMAIN, R. (1971). MULTAN: a Computer Program for the Automatic Solution of Crystal Structures. Univ. of York.
- PREWITT, C. T. (1966). SFLS 5. A Fortran IV Full-Matrix Crystallographic Least-Squares Program. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- RICHE, G. (1973). Acta Cryst. A29, 133-137.